Los datos los obtenemos con la ecuación:
V=V0+g.t
V(0,08)=-9,8.0,08= -0,8
V(0,16)=-9,8.0,16= -1,6
V(0,24)=-9,8.0,24= -2,3
V(0,32)=-9,8.0,32= -3,1
V(0,4)=-9,8.0,4= -3,9
V(0,48)=-9,8.0,48= -4,7
Con estos datos obtenemos esta gráfica:
Es una ecuación lineal, por lo que es una recta y su ecuación es y=mx (no hay n porque la gráfica sale del (0,0)). En este caso la pendiente (m) es la aceleración. Es continua y su dominio es (0,+) porque el tiempo no puede ser negativo y su recorrido es (-,0) porque al ser una caída libre la velocidad es negativa. La gráfica tiende a una velocidad - cuando avanza hasta + en el tiempo.
Esta gráfica confirma nuestras expectativas, ya que al ser la aceleración constante, la velocidad va creciendo (en este caso va decreciendo al ser una caída libre) a medida que avanza el tiempo, por lo que el objeto va más rápido y avanza más espacio en el tercer segundo que en el primero.
La gráfica nos confirma esto:
En el segundo 0,3 la velocidad es de -3 m/s, y en el 0,4 la velocidad es de -3,9m/s.
4. A partir de la gráfica construida v(t), determinad el valor de la aceleración de la gravedad, g. Comparad el valor de g obtenido con el ya conocido.
Teniendo ya la gráfica es relativamente fácil sacar el dato de la gravedad. Si tuviéramos más parte de la gráfica podríamos averiguar la gravedad viendo la velocidad que alcanza el objeto en un segundo, ya que la aceleración (g) es la pendiente. De todas formas hay otras maneras de sacar este dato.
Sabemos la ecuación de la velocidad:
Y a la vez tenemos con la gráfica todos los datos menos la aceleración, por lo que despejamos y conseguimos el valor de g.
Datos:
El error relativo es mínimo por lo que podemos decir que hemos averiguado la aceleración de la gravedad-9,8.
5. Si existe discrepancia entre el modelo teórico y el obtenido experimentalmente, detectad y analizad las posibles fuentes de error. El modelo teórico, es decir, lo que teóricamente se hubiera obtenido, lo podéis desarrollar utilizando las ecuaciones cinemáticas para la caída libre: h = 1/2gt2 y v = gt (considerad g = 9,8 m/s2) y representad la gráfica v-t para los valores de tiempo anteriores.
Existe una discrepancia así que vamos a realizar los pertinentes cálculos:
1º con la fórmula de la posición frente al tiempo:
-------> ------->
------->-------> -------> ------->
2º con la fórmula de velocidad frente a tiempo:
-------> ------->------->
Aparte de que estos números que salen son muy diferentes a 9,8(que podría ser debido al rozamiento del viento que sufre el cuerpo) su signo también es diferente. Esto se debe a que los datos que se dan al principio sobre la altura los ponen como positivos, pero en realidad deberían ser negativos, ya que en el eje de ordenadas aumentan negativamente, y esto se puede comprobar viendo los datos de la velocidad en el ejercicio 3, que son negativos lo que hace que la posición aumente negativamente. La gráfica del ejercicio 1 debería ser así:
6.Una cosa más: dado que estamos inmersos en el tema de Trabajo y Energía, ¿podríais calcular la velocidad de la bola en el punto 6 mediante el Teorema de Conservación de la energía?. Comparad el dato con la obtenida aplicando las ecuaciones cinemáticas para el movimiento de caida libre: v = gt (tomando g = 9.8 m/s2).
El Teorema de Conservación de Energía dice lo siguiente: ``la energía ni se crea ni se destruye, se transforma´´. También sabemos que se cumple la siguiente igualdad:
La Energía Mecánica es constante, así que lo que debemos hacer es encontrar qué son las otras dos energías para igualarlas y sustituir luego en el resultado los valores de la bola en el punto 6: , y luego hacer lo mismo con las ecuaciones cinemáticas del movimiento en caída libre para comparar los resultados:
() ()
------->------->------->
Ecuación cinemática caída libre:
-------> ------->
Ambos resultados son prácticamente el mismo por lo que el error experimental es mínimo y este podría ser debido a que las medidas tomadas al principio no eran demasiado exactas al ser difíciles de medir.